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Numerical simulation provides a valuable assistance in the controlling of forming processes.
The elasto-plastic orthotropic constitutive law is based on the choice of an equivalent stress,
a hardening law and a plastic potential. An identification of the model parameters from an
experimental database is developed. This database consists in hardening curves and Lank-
ford coefficients of specimens subjected to off-axis tensile tests. The proposed identification
strategy is applied to aluminum sheets. The behavior of this material is studied under several
solicitations. The anisotropic behavior of the aluminum plate is modeled using the Barlat
criterionand the hardening law. The obtained Lankford coefficients are compared to those
which are identified by a different strategy.
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1. Introduction

Except for certain processes such as molding, a large majority of metal parts is obtained by
forming processes during which the material is plastically deformed. They are optimized to
reduce the cost, which requires manufacturers to increasingly use numerical simulation and,
therefore, need to describe the material behavior.

These simulations are often flawed by a simplified description of the plastic behavior of the
material; particularly the anisotropy of rolled sheets (Ghouati and Gelin, 2001; Znaidi, 2004;
Haddadi et al., 2006; Kim et al., 2007; Barlat and Lian, 1989). Therefore, it is important to
accurately model the plastic behavior of metals in large deformation in order to better predict
their behavior of the part during the forming processes (Boubakar and Boisse, 1998; Manget
and Perre, 1999; Dogui, 1989).

To describe the plastic behavior of the material, it is necessary to clarify the concept of the
load surface related to a plasticity criterion (Barlat and Brem, 1991) that indicates conditions
of plastic flow.

The experimental determination of these areas through various mechanical testing and ma-
thematical modeling has been the subject of many inquisitive efforts such as those using the
Von Mises criterion because of its implementation in most commercial finite element codes. This
criterion is called the energy criterion in which the elastic deformation energy of the material
must not exceed a limit value to remain within the elastic range.
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In the case of a metal sheet, the material is considered as having orthotropic plasticity where
it reserves three preferred directions as it is used in the Hill criterion (Hill, 1948).

Also, to describe the asymmetric behavior in tension and compression such as the anisotropy
of a compact hexagonal structure of a metal sheet, Cazacu et al. (2008, 2009) proposed a new
orthotropic criterion (Barlat and Lian, 1989; Gronostajsk, 2000; Plunkett et al., 2006).

The objective of this work is to provide a model for numerical simulation of forming processes
by plastic deformation of thin metal sheets. Hence, the importance of developing a general
framework for elasto-plastic orthotropic models (initial orthotropic and isotropic hardening)
based on the choice of an equivalent stress and using the Barlat criterion especially for aluminum
alloys (Barlat and Brem, 1991), a hardening law and a plastic potential (Znaidi et al., 2009;
Baganna et al., 2010). An identification of the model parameters from an experimental database
is developed.

This database consists of many hardening curves from various tests interpreted as homoge-
neous (Znaidi, 2004) and their Lankford coefficients (Lankford et al., 1950). Those plates are
obtained from a hot-rolling process. We use in our work a method called the Simplex algorithm
for computer programming to identify the constitutive parameters of the material behavior. This
is an important step. A new identification strategy with its validation will be presented, followed
by a comparative study using the Hill criterion.

2. Anisotropic elasto-plastic constitutive laws

The formulation of the anisotropic elasto-plastic behavior in large deformations is well under-
stood now (Znaidi, 2004; Haddadi et al., 2006; Boubakar and Boisse, 1998; Manget and Perre,
1999): using the formalism of the rotating frame ensures the objectivity of the behavior law
regardless of the natural (isotropic, anisotropic) constitutive model functions.

In this work, we focus on the plastic hardening behavior. The materials are considered as
incompressible with negligible elastic deformations. The plastic hardening constitutive laws that
we have to study fall within the following framework (with the stress tensor)

f(σ, α) ¬ 0 α = Q[α] (2.1)

with Q being the transformation tensor of Lagrange state to Eulerien state. α represents the
internal hardening variable

D = λh(σ, α) α̇ = λl(σ, α) (2.2)

with λ as the plastic multiplier that can be determined from the consistency condition ḟ = 0
and D is the plastic deformation rate tensor.

3. Orthotropic plasticity model

Models are formulated for standard generalized materials with isotropic hardening which are
described by an internal hardening variable, a law of evolution and an equivalent deformation.

3.1. Internal variable hardening

This work is limited to plastic orthotropic behavior. In fact, the material is initially ortho-
tropic and remains orthotropic. The isotropic hardening is assumed to be captured by a single
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scalar internal hardening variable denoted by α. In particular, we will assume that the elastic
range evolves homothetically, the yield criterion is then written as follows

f(σD, α) = σc(σ
D)− σs(α) (3.1)

where σD is the deviator of the Cauchy stress tensor (incompressible plasticity).
The function σc(σ

D) satisfies the following condition

σc(aσ
D) = aσc(σ

D) for all a > 0 (3.2)

This property implies that the normal nc = ∂σc/∂σ
D is homogeneous of the zero degree with

respect to σD

nc(aσ
D) = nc(σ

D) for all a > 0

σ
D : nc = σc

(3.3)

3.2. Evolution law

We assume the existence of a plastic potential g(σD, σs(α)) as follows

g(σD, σs(α)) = σp(σ
D)− σs(α) (3.4)

The hardening function σs(α) plays the role of the thermodynamic function associated with the
internal hardening variable α.
The function σp(σ

D) is assumed to beorthotropic positively homogeneous in the first degree
with respect to σD. The evolution law can be written as follows

D = λnp np =
∂σp
∂σD

α̇ = −λ ∂g
∂σs
= λ (3.5)

The hypothesis of associated plasticity implies that the plastic potential g is identically σc.
The behavior model will be defined by data from two equivalent stresses, σc and σp, which

are unique and similar. We consider the case of non-associated normality.

3.3. Equivalent deformation

The equivalent deformation is obtained according to one of the following definitions:
— Equivalent deformation under the criterion εc

ε̇c =
1

σc
(σD : D) =

1

σc
(σD : D) =

λσp
σc

(3.6)

— Equivalent deformation according to the potential εp

ε̇p =
1

σp
(σD : D) =

1

σp
(σD : D) = λ (3.7)

4. Orthotropic equivalent stresses

Any orthotropic function σc(σ
D) with respect to σD is written in a general way according to

the following invariant:

— isotropy: det(σD), |σD|
— transverse isotropy: σD :m3, (σ

D)2 :m3

— orthotropy: σD : (m1 −m2),
√

(σD)2 : (m1 −m2)
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where mi = ~mi ⊗ ~mi (without summation), ~mi being the orthonormal orthotropy landmark.
The application of this configuration to the stress deviator gives us

x1 =

√

3

2
(σD11 + σ

D
22) x2 =

1√
2
(σD11 − σD22 x3 =

√
2σD12

x4 =
√
2σD23 x5 =

√
2σD13

(4.1)

Using the special setup of the space deviators, we can write the stress deviator as follows

|σD| =
√

x21 + x
2
2 det(σD) =

x1√
6

(

x22 −
x21
3

)

x1 =

√

3

2
(σD1 + σ

D
2 ) x2 =

1√
2
(σD1 − σD2 )

(4.2)

We introduce the angle θ which defines the orientation of σD in the deviatory plane

x1 = |σD| cos θ x2 = |σD| sin θ (4.3)

We define the off-axis angle ψ (angle which defines the orientation of the loading directions with
respect to the preferred direction of the material) as in the following

x1 = x1 x2 = x2 cos 2ψ x3 = x2 sin 2ψ (4.4)

This allows us to write them in terms of the two angles θ and ψ

x1 = |σD| cos θ x2 = |σD| sin θ cos 2ψ x3 = |σD| sin θ sin 2ψ (4.5)

Using the special setup of the space deviators, the general form of the equivalent orthotropic
plane constraint, is thus

σc(σ
D) = σc(x1, x2, |x3|) =

|σD|
f(θ, 2ψ)

(4.6)

Any type of criterion (4.6) can be written in the form

f(θ, 2ψ) =
|σD|
σs(α)

(4.7)

where θ is the angle that defines the test and ψ the off-axis angle (Baganna et al., 2010; Lankford
et al., 1950).

Table 1. Values of θ relative to various tests

Test
Expansions Simple Large Simple
equibiaxes traction traction shear

θ 0 π/3 π/6 π/2

5. Identification procedures

5.1. Basic assumption

In this Section, we focus on the phenomenology of plastic behavior; especially modeling
plasticity and hardening based on experimental data represented as families of hardening cu-
rves, and Lankford coefficient data. In order to simplify our identification process, the following
assumptions are adopted:
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• Hypothesis 1 – Identification through “small perturbations” process.
• Hypothesis 2 – The tests used are considered as homogeneous tests.
• Hypothesis 3 – We neglect the elastic deformation; the behavior is considered as rigid
plastic incompressible.

• Hypothesis 4 – The plasticity surface evolves homothetically (isotropic hardening).
• Hypothesis 5 – All tests are performed in the plane of the sheet resulting in a plane stress
condition.

5.2. Limitation of the model

The identified model is defined by:

• An equivalent stress σc(A : σD), σc is an isotropic function. It is assumed that the shape
is defined by coefficients of the form mi.

A – 4th order orthotropic tensor defined by anisotropy coefficients ai.

• A potential equivalent stress σp(Ap : σD), σp is defined by coefficients of the form m′i and
anisotropic coefficients a′i.

• Hardening curve σs(α)
The tests used for the identification of this model are “radial” and “monotonous” tests

σ = σa (5.1)

with σ > 0 and increasing, and a is constant.

And the deformation tensor is

ε = εb (5.2)

Knowing that σ(ε) is determined from experimental tests as r(ψ).

According to the yield criterion (3.1)

σc(q)− σs(α) ¬ 0 (5.3)

where q = A(ai) : σ, thus q = σA(ai) : a.

So the equivalent stress (positively homogeneous of one degree)

σc(σA : a) = σσc(A : a) = σae (5.4)

The equivalent deformation is determined from the duality relation

ε̇c =
σε̇

σc
(5.5)

Similar to the equivalent deformation relative to the potential, we write

εp = εbe (5.6)

When the potential identifies the criterion, we have be = 1/ae.

Under these conditions, our hardening curve may be written as in the following

σae = σs(εbe)⇒ σ =
σs(εbe)

ae
(5.7)
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First comment

If our hardening curve is shown by an analytical law such as the following law

σs = k(α0 + α)
n ⇒ σ =

k(α0 + εbe)
n

ae
= ktest(αtest + ε)

n

ktest =
kbne
ae

αtest =
α0
be

(5.8)

when n is the same for all tests.

A second analytical law

σs = σ0 + kα
n ⇒ σ =

σ0 + k(εbe)
n

ae

σs = σ0test + ktestε
n with σ0test =

σ0
ae

ktest =
kbe
ae

(5.9)

In conclusion, we can say that regardless of the analytical law representing the hardening curve
and whatever the test, the value of n does not change.

Second comment

We can also begin our identification procedures using the Lankford coefficient as determined
from the tensile test by

r =
ε̇2
ε̇3
= − 1

1 + ε̇1/ε̇2
(5.10)

We can notice that the Lankford coefficient is independent of ε. This coefficient is equal to one
in the case of isotropy, and remains constant in the case of transverse isotropy. However, in
the case of orthotropy, it varies depending on the off-axis angle ψ. This coefficient completely
characterizes the anisotropy of the sheet when loaded in its plane

ε̇ = λnp(σa) aTψ =
ε̇1
ε̇2
=
[np(a)]11
[np(a)]22

r(ψ) = − 1

1 + aTψ
(5.11)

So identifying this coefficient, means determining aTψ relative to a well chosen model.

6. Results and discussion

This identification strategy requires: (a) an experimental database, (b) criterion for anisotropic
plasticity and (c) validation strategy.

In the particular case of aluminum sheets, where anisotropy is present, the identification of
this constitutive law requires the identification of:

• The hardening coefficients k and n,
• The anisotropy coefficients f , g, h, and n notes that ai has the form factor of m,
• The Lankford coefficient r(ψ).

The test specimens are cut in different directions relative to the rolling direction of the sheet,
according to the geometry defined in Fig. 1.
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Fig. 1. Test piece in tension. Definition of the systems axis and current dimensions of the active area
(b0 = 12.5mm)

6.1. Identification of k and n

Using the Hollomon law

σs = kε
n (6.1)

And using the Barlat criterion (Barlat and Brem, 1991)

σmc = |q1 − q2|m + |q2 − q3|m + |q1 − q3|m (6.2)

where q1, q2 and q3 are the eigenvalues of the tensor q defined by Eq. (5.3).
Using the plastic Barlat model and respecting the assumptions, the identification of the thin

aluminum sheet is equivalent to choosing the coefficients of the model while minimizing the
squared difference between the theoretical and experimental results.
In Table 2, we present the values of k and n for different tractions tests.

Table 2. Identification of the constants of the hardening law

ψ 0◦ 45◦ 90◦

K [daN/mm2] 15.1117 17.2835 13.8759

n 0.253 0.2316 0.2485

Knowing that the coefficient n is the same for all tests as demonstrated at the beginning of
this work. By convention we choose n for traction in the direction ψ = 0◦ as a reference. For
n = 0.253, we present different values of k (Table 3).

Table 3. Identification of the constant hardening law for the fixed n

ψ 0◦ 45◦ 90◦

K [daN/mm2] 15.1132 18.0828 14.002

In Figs. 2a and 2b, the experimental hardening curves (exp) and the curves identified from
the model (ident1) using an average value of n and the curves identified by our model (ident2)
are represented. For tensile tests in ψ = 45◦, the two models (ident1) and (ident2) give a clear fit
between the theoretical and experimental results. However, for tests in ψ = 0◦, identifying these
results provides better validation for a good agreement between the experimental and theoretical
results for the model (ident2) presented in this work.

6.2. Identification of anisotropic coefficients ai and shape coefficient m

Our second identification determines the coefficients of anisotropy (f , g, h, n) and the shape
coefficient m (Table 4), considering the Barlat criterion (6.2).
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Fig. 2. Identification of the hardening curve: (a) ψ = 0◦, (b) ψ = 45◦

Table 4. Identification of anisotropic coefficients and the shape coefficient m

F g h n m

0.2854 0.2064 0.3335 0.8921 6.9584

6.3. Evolution of the anisotropic and the Lankford coefficient

Using the identified anisotropic coefficients, we represent in Fig. 3a the developments of the
Lankford coefficient and the evolution of the anisotropy based on off-axis angles (Fig. 3b).

Fig. 3. (a) Evolution of the Lankford coefficient and (b) evolution of the anisotropy based ψ

We find a good agreement between the experimental results and those from the model using
the Barlat criterion. We notice an important anisotropy at ψ = 45◦ (see Fig. 3b). However, the
identification using the Hill criterion is not validated by the Lankford coefficient.

6.4. Evolution of the load surface

The model (ident2) allows us to study the load surface on each test. We note that this
material is resistant to simple shear much more than to simple traction. In contrast, the plastic
flow in wide traction (i.e. the specimen length is comparable to its width) is quickly reached.

7. Validation

We use tensile tests at ψ = 90◦ in order to validate our model. The results show a good agreement
between the theoretical results on the model (using anisotropic coefficients, shape coefficient m)
and experimental data (Fig. 5).
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Fig. 4. Evolution of the load surface in the deviatory plane (x2, x3)

Fig. 5. Validation of the hardening curve at ψ = 90◦

8. Conclusion

In this work, we show that the identification strategy results can be extracted. This identifica-
tion has focused both on plastic material parameters of the constitutive law and the Lankford
coefficients. Thus, the plastic behavior model: the Hollomon law and the Barlat criterion with
5 parameters are identified.

Validation by comparing the models with the experiment data base has been performed.

The model using the Barlat criterion is in good agreement with the experimental results
relating to the Lankford coefficient. It is better than the Hill model.

Following this strategy, we observe very pronounced anisotropy of Aluminum A5 and the
load surface for different tests at the end of this identification.
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